Jumat, 13 Juni 2014

matematika limit fungsi dan contoh soal

Limit suatu fungsi f(x) untuk x mendekati suatu bilangan a adalah nilai pendekatan fungsi f(x) bilaman x mendekati a
Misalnya
lim┬(x→a)⁡〖f(x)=M〗
ini berarti bahwa nilai dari fungsi f(x) nilainya mendekati M jika nilai x mendekati abiar lebih paham kita simak contoh berikut
Contoh 1
Tentukan limit dari
soal 2
Jawab :
Untuk nilai x mendekati 1 maka (4×2+1) akan mendekati .12 + 1 = 5 sehingga nilai dari
jawaban contoh soal 1
Contoh 2
Tentukan nilai dari limit
lim┬(x→1)⁡〖(x^2+2x-3)/(x-1)〗
Jawab
Misal sobat langsung memasukkan nili x = 1 ke dalam persamaan hasilnya tidak akan terdefinisi karena bilangan pembagi ketemu 0 (x-1). Akan tetapi bentuk di atas masih bisa disederhakan guna menghilangkan komponen pembagi yang bernilai nol yaitu
 lim┬(x→1)⁡〖(x^2+2x-3)/(x-1)=lim┬(x→1)⁡〖((x-1)(x+3))/((x-1))〗 〗=lim┬(x→1)⁡〖x+3=4〗

Cara Mengerjakan Limit Fungsi yang Tidak Terdefinisi

Adakalanya penggantian niali x oleh a dalam lim f(x) x→a membuat f(x) punya nilai yang tidak terdefinisi, atau f(a) menghasilkan bentuk 0/0, ∞/∞ atau 0.∞. Jika terjadi hal tersebut solusinya adalah bentuk f(x) coba sobat sederhanakan agar nilai limitnya dapat ditenntukan.

Limit Bentuk 0/0


Bentuk 0/0 kemungkinan timbul dalam
bentuk o
ketika sobat menemukan  bentuk seperti itu coba untuk utak-utik fungsi tersebut hingga ada yang bisa dicoret. Jika itu bentuk persaman kuadrat sobat bisa coba memfaktorkan atau dengan cara asosiasi dan jangan lupakan ada aturan a2-b2 = (a+b) (a-b). Berikut contohnya
lim┬(x→1)⁡〖(x^2-1)/(x-1)=lim┬(x→1)⁡〖((x-1)(x+1))/(x-1)=lim┬(x→1)⁡〖(x+1)=2〗 〗 〗
bentuk 0 contoh soal 2

Bentuk ∞/∞


Bentuk limit  ∞/∞ terjadi pada fungsi suku banyak (polinom) seperti
limit tak hingga
Contoh Soal
Coba sobat tentukan
cotoh soal limit tak hingga
Jawab
 lim┬(x→∞)⁡〖(〖4x〗^3+2x+1)/(〖5x〗^3+〖8x〗^2+6)〗 	=lim┬(x→∞)⁡〖(〖4x〗^3/x^3 +2x/x^3 +1/x^3 )/(〖5x〗^3/x^3 -〖8x〗^2/x^3 +6/x^3 )〗  =lim┬(x→∞)⁡〖(4+2/x^2 +1/x^3 )/(5-8/x+6/x^3 )〗  〖=lim┬(x→∞)〗⁡〖(4+2/∞^2 +1/∞^3 )/(5-8/∞+6/∞^3 )〗  〖=lim┬(x→∞)〗⁡〖(4+0+0)/(5-0+0)=4/5〗
Berikut rangkuman rumus cepat limit matematika bentuk  ∞/∞
rumus cepat limit matematika
  • Jika m<n maka L = 0
  • Jika m=n maka L = p/q
  • Jika m>n maka L = ∞

Bentuk Limit (∞-∞)


Bentuk (∞-∞) sering sekali muncul dalam ujian nasional. Bentuk soalnya akan sangat beragam. Namun demikian, penyelesaiannya tidak jauh-jauh dari penyederhanaan. Be creative, out of the box. Berikut contoh soal yang kami ambil dari ujian nasional 2013.
Tentukan Limit
2014-03-01_210110
Jika sobat masukkan x -> 1 maka bentuknya akan mmenjadi (∞-∞). Untuk menghilangkan bentuk ∞-∞ kita sederhanakan bentuk tersebut menjadi
jawaban soal

matematika fungsi komposisi dan invers beserta contoh soal

Fungsi Komposisi dan Invers


Fungsi Komposisi dan Invers : Pengertian Fungsi Komposisi

Fungsi komposisi dan invers – Jika terdapat dua buah  fungsi misalkan f  (x) dan g  (x) maka dapat dibentuk fungsi baru dengan menggunakan prinsip operasi komposisi. Operasi komposisi ditulis dengan notasi atau lambang  ○ ( dibaca : komposisi atau bundaran). Fungsi baru yang diperoleh dibentuk dari operasi komposisi fungsi, yaitu:
(i) ( f ○ g ) ( x ), dibaca : f komposisi g x atau f g x
(ii) ( g ○ f ) ( x ), dibaca : g komposisi f x atau g f x.
Perhatikan gambar dibawah ini:


Diagram panah fungsi komposisi dan invers
Dari gambar diatas fungsi g : A B. Tiap x A dipetakan ke y B, sehingga g : x y ditentukan dengan rumus:   y = g ( x ) .
Fungsi f : B C. Tiap y B dipetakan ke z C, sehingga f : y z
ditulis dengan rumus z = f ( y ) .
Fungsi h : A C. Tiap x A dipetakan ke z C, sehingga h : x z
ditulis dengan rumus z = h ( x ).
Fungsi h adalah pemetaan langsung dari himpunan A ke himpunan C. Fungsi h seperti ini disebut komposisi dari fungsi f dan fungsi g , ditulis dengan notasi :  h = f ○ g atau
h ( x ) = ( f ○ g ) ( x ).                                                              © fungsi komposisi dan invers©

Dari uraian fungsi komposisi dan invers diatas , rumus fungsi komposisi f dan g adalah:

http://soulmath4u.blogspot.com/
Dan rumus fungsi komposisi g dan f adalah:

http://soulmath4u.blogspot.com/
Agar lebih memahami dan terampil menggunakan rumus fungsi komposisi serta fungsi komposisi dan invers, perhatikan contoh-contoh dibawah ini:
Contoh 1 :
Diketahui f ( x ) = 4 x – 1 dan g ( x ) = x2 + 2. Tentukanlah :
(a) ( f ○ g ) ( x )
(b) ( g ○ f ) ( x )
(c) ( f ○ g ) ( -2 )
[Penyelesaian]
(a) ( f ○ g ) ( x ) = f ( g(x) ) = f ( x2 + 2 ) = 4 ( x2 + 2 ) – 1 =  4 x2 + 7
(b) ( g ○ f ) ( x ) = g ( f(x) ) = g (4 x – 1 ) =  ( 4x – 1 )2 + 2 = 16x2 – 8 x + 3
(c)  ( f ○ g ) ( -2 ) =  4 (-2)2 + 7 = 23.
Fungsi komposisi dan invers ,Contoh 2 :
Tentukanlah ( f ○ g  ○ h ) ( x ) jika diketahui f ( x ) = 3 x – 2 , g ( x ) = 4 – x  dan
[Penyelesaian]
Bentuk ( f ○ g  ○ h ) ( x ) = ( f ○ g ) ○ h, karena ada tiga fungsi yaitu f , g dan h maka kita tentukan terlebih dahulu ( f ○ g ),
                    
Barulah tentukan ( f ○ g ) ○ h, yaitu,



Jadi, ( f ○ g  ○ h ) ( x ) = x + 6.                             © fungsi komposisi dan invers
Fungsi komposisi dan invers - Syarat fungsi komposisi
Berkenaan dengan fungsi komposisi dan invers , tidak semua fungsi dapat di komposisikan ada syarat-syarat tertentu yang harus dipenuhi oleh dua fungsi yang akan dikomposisikan. Perhatikan syarat-syarat fungsi komposisi dibawah ini.
(1) Syarat agar fungsi f dan fungsi g dapat di komposisikan menjadi fungsi komposisi
( f ○ g ) adalah irisan antara domain fungsi f dengan range fungsi g bukan himpunan kosong atau
http://soulmath4u.blogspot.com/
(2) Domain ( f ○ g ) merupakan himpunan bagian dari domain fungsi g, atau

(3) Range fungsi komposisi ( f ○ g ) merupakan himpunan bagian dari range fungsi f, atauR

Ketiga syarat diatas haruslah benar-benar diperhatikan untuk memahami fungsi komposisi dan invers lebih lanjut.
Contoh 3 :
Diketahui f ( x ) = 2 x – 1 dan g ( x ) = x2  - 1, tentukanlah nilai  a  agar ( g○f○f ) (a) =  - 1
[Penyelesaian]


Tentukan terlebih dahulu ( g○f )(x) ,





Fungsi komposisi dan Invers : Menentukan fungsi jika komposisi dan fungsi yang lain sudah diketahui

Jika fungsi komposisi ( f ○ g ) atau ( g ○ f ) sudah terlebih dahulu diketahui maka fungsi f dan fungsi g dapat ditentukan. Coba perhatikan beberapa contoh soal fungsi komposisi dan invers dibawah ini :
Contoh 4 :
Diketahui ( f ○ g )(x) = x , tentukan nilai g (x) jika,


[Penyelesaian]



fungsi komposisi dan invers,
Contoh 5  :
Diketahui g ( x ) = 4x2 – 2, tentukan nilai f ( 2x + 1 )  jika ( g ○ f ) (x) = 16x2 + 16x + 2
[Penyelesaian]
↔ ( g ○ f ) (x) = 16x2 + 16x + 2
↔ g (f(x)) = 16x2 + 16x + 2
↔ 4 f2(x) – 2 = 16x2 + 16x + 2
  f2(x) = 4x2 + 4x + 1 = ( 2x + 1 )2
↔ f (x) = 2x + 1
Jadi, f ( 2x + 1 ) = 2 (2x+1) +1 = 4x +3
Soal-soal tentang fungsi komposisi dan invers banyak sekali ragam dan variasinya, tetapi bagaimanapun bentuk variasi soal tersebut dengan tetap berpegang pada prinsip-prinsip dasarnya tentu saja akan menjadi lebih mudah.

Fungsi Komposisi dan Invers -- Sifat sifat fungsi komposisi

Beberapa sifat fungsi komposisi yang penting, yaitu :
(1) ( f ○ g )(x) ≠ ( g ○ f )(x), operasi komposisi pada fungsi tidak berlaku sifat komutatif
(2) ( f ○ (g○h )(x) = ( (f ○ g)○h )(x), operasi komposisi berlaku sifat asosiatif
(3) ( f ○ I )(x) = ( I ○ f )(x) = f ( x ), I (x) adalah unsur identitas.